ECE 8898: Open Graduate Seminar

Course Description
Introduction to potential research areas. Students will attend OSU sponsored talks relevant to topics in Electrical Engineering and critique them through written reports.

Prior Course Number: 888
Transcript Abbreviation: Open Grad Sem
Grading Plan: Satisfactory/Unsatisfactory
Course Deliveries: Classroom
Course Levels: Graduate
Student Ranks: Masters, Doctoral
Course Offerings: Autumn, Spring, May, Summer
Flex Scheduled Course: Never
Course Frequency: Every Year
Course Length: 14 Week
Credits: 0.5 - 3.0
Repeatable: Yes
Maximum Repeatable Credits: 6.0
Total Completions Allowed: 6
Allow Multiple Enrollments in Term: No
Graded Component: Seminar
Credit by Examination: No
Admission Condition: No
Off Campus: Never
Campus Locations: Columbus
Prerequisites and Co-requisites: Prereq: Grad standing in ECE.
Exclusions:
Cross-Listings:

Course Rationale: Existing course.

The course is required for this unit's degrees, majors, and/or minors: No
The course is a GEC: No
The course is an elective (for this or other units) or is a service course for other units: Yes

Subject/CIP Code: 14.1001
Subsidy Level: Doctoral Course

General Information

The credit earned for this class will not be counted as part of the hour requirement for the Masters degree, nor can it be used as any part of the three areas of emphasis on the PhD Plan of Study.

Course Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Lec</th>
<th>Rec</th>
<th>Lab</th>
<th>Cli</th>
<th>IS</th>
<th>Sem</th>
<th>FE</th>
<th>Wor</th>
</tr>
</thead>
<tbody>
<tr>
<td>As an introduction to potential research areas, students will attend OSU sponsored talks relevant to topics in Electrical Engineering and critique them by written reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Representative Assignments
ABET-EAC Criterion 3 Outcomes

<table>
<thead>
<tr>
<th>Course Contribution</th>
<th>College Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>An ability to apply knowledge of mathematics, science, and engineering.</td>
</tr>
<tr>
<td>b</td>
<td>An ability to design and conduct experiments, as well as to analyze and interpret data.</td>
</tr>
<tr>
<td>c</td>
<td>An ability to design a system, component, or process to meet desired needs.</td>
</tr>
<tr>
<td>d</td>
<td>An ability to function on multi-disciplinary teams.</td>
</tr>
<tr>
<td>e</td>
<td>An ability to identify, formulate, and solve engineering problems.</td>
</tr>
<tr>
<td>f</td>
<td>An understanding of professional and ethical responsibility.</td>
</tr>
<tr>
<td>g</td>
<td>An ability to communicate effectively.</td>
</tr>
<tr>
<td>h</td>
<td>The broad education necessary to understand the impact of engineering solutions in a global and societal context.</td>
</tr>
<tr>
<td>i</td>
<td>A recognition of the need for, and an ability to engage in life-long learning.</td>
</tr>
<tr>
<td>j</td>
<td>A knowledge of contemporary issues.</td>
</tr>
<tr>
<td>k</td>
<td>An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.</td>
</tr>
</tbody>
</table>

Additional Notes or Comments

Updated description, prereqs, and topics to match university format 3/20/12

Prepared by: Betty Lise Anderson