ECE 6531: Fundamentals of Semiconductor Devices

Course Description

An overview of the physics, design, and engineering of semiconductor electronic and optoelectronic devices. Applications of silicon, compound semiconductor, and nanotechnology will be covered.

Prior Course Number: 831

Transcript Abbreviation: Fund Semicond Dev

Grading Plan: Letter Grade Course Deliveries: Classroom Course Levels: Graduate

Student Ranks: Masters, Doctoral

Course Offerings: Spring Flex Scheduled Course: Never Course Frequency: Every Year Course Length: 14 Week

Credits: 3.0 **Repeatable:** No

Time Distribution: 3.0 hr Lec

Expected out-of-class hours per week: 6.0

Graded Component: Lecture **Credit by Examination:** No **Admission Condition:** No

Off Campus: Never

Campus Locations: Columbus

Prerequisites and Co-requisites: Prereq: 5530 (730), or permission of instructor.

Exclusions: Not open to students with credit for 5531.

Cross-Listings:

Course Rationale: Existing course.

The course is required for this unit's degrees, majors, and/or minors: No

The course is a GEC: No

The course is an elective (for this or other units) or is a service course for other units: Yes

Subject/CIP Code: 14.1001 Subsidy Level: Doctoral Course

Programs

Abbreviation	Description			
CpE	Computer Engineering			
EE	Electrical Engineering			

Course Goals

Learn advanced semiconductor device physics.		
Learn to design semiconductor devices.		
Learn performance limits of state-of-the-art semiconductor devices and approaches for overcoming them.		

Course Topics

Topic	Lec	Rec	Lab	Cli	IS	Sem	FE	Wor
Device applications of semiconductors	1.0							
Transport in heterojunctions	3.0							
Photodiodes and optoelectronic integrated circuits								
Solar cells - an introduction	3.0							
Light emitting diodes	3.0							
Laser diodes - an introduction								
Heterojunction FET - HEMT								
Long-channel MOSFET models								
Sub-micron MOSFET - threshold volt, sub-threshold current, scaling, hot carriers								
Bipolar junction transistors								
Heterojunction bipolar transistors								
Tunnel diodes, resonant tunneling diodes								
Wide-bandgap semiconductors - transport physics and optical properties								
High-frequency and high power wide-bandgap electronics								
Optical devices based on wide-bandgap semiconductors								

Representative Assignments

Homework

Grades

Aspect	Percent
Homework	20%
Two mid-term examinations	
Final examination	40%

Representative Textbooks and Other Course Materials

Title	Author			
Semiconductor Device Physics and Design	Umesh Mishra and Jasprit Singh			

ABET-EAC Criterion 3 Outcomes

Course Contribution		College Outcome	
***	a	An ability to apply knowledge of mathematics, science, and engineering.	
	b	An ability to design and conduct experiments, as well as to analyze and interpret data.	
**	С	An ability to design a system, component, or process to meet desired needs.	
	d	An ability to function on multi-disciplinary teams.	
**	e	An ability to identify, formulate, and solve engineering problems.	
	f	An understanding of professional and ethical responsibility.	
	g	An ability to communicate effectively.	

Course Contribution		College Outcome	
	h	The broad education necessary to understand the impact of engineering solutions in a global and societal context.	
**	i	A recognition of the need for, and an ability to engage in life-long learning.	
*	j	A knowledge of contemporary issues.	
**	k	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	

Additional Notes or Comments

corrected prereq from 4530 to 5530. Updated prereq, exclusion, goals, and topics to university format.

Removed exclusion 10/9/12.

Renumbered from 5531 11/21/13

Make consistent with university tool $3/5/14~\mathrm{BLA}$

Remove "or grad standing in ..." from prerequisites and replace with "or permission of instructor." $3/5/15~\mathrm{GJV}$

Prepared by: George Valco