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ABSTRACT

Mapping an unknown terrestrial signal of opportunity
(SOP) via multiple collaborating receivers is considered.
The receivers are assumed to have knowledge about their
own states, make pseudorange observations on an unknown
SOP, and fuse these pseudoranges through a central esti-
mator. Two problems are considered. The first problem
assumes N receivers with random initial states to pre-exist
in the environment. The question of where to optimally
place an additional receiver so to maximize the estimate
quality of the SOP’s states is addressed. Three optimiza-
tion problems are compared: minimizing the geometric di-
lution of precision (GDOP), maximizing the determinant
of the GDOP matrix, and maximizing the area of the poly-
gon inscribed in the unit circle whose vertices are the unit
line of sight vectors from the SOP to the receivers. It
is demonstrated that the three optimization problems are
comparable and it is shown that the area maximization
problem is piecewise-concave with a simple analytical so-
lution. The second problem addresses the optimal esti-
mation performance as a function of time and number of
receivers in the environment. It is demonstrated that such
optimal performance assessment could be generated off-
line without knowledge of the receivers’ initial states and
trajectories or the receivers’ estimates of the SOP.

I. INTRODUCTION

Opportunistic navigation (OpNav) aims to exploit ambi-
ent radio signals of opportunity (SOPs) in the environment
to enable navigation whenever global navigation satellite
system (GNSS) signals become inaccessible or untrustwor-
thy [1, 2]. SOPs include AM/FM radio [3], cellular [4],
television [5], Iridium [6], and Wi-Fi [7].

In contrast to GNSS signals, SOPs are not intended for
navigation. In particular, while information about GNSS
satellite vehicle (SV) states are readily accessible, the
states of SOPs may not be known a priori. Therefore,
a first step in exploiting SOPs is to estimate their states.
This can be accomplished either (i) in a mapping frame-
work in which the receivers have knoweledge of their own
states (by having access to GNSS signals, for example)
[8, 9] or (ii) in a simultaneous localization and mapping
framework in which the receivers’ states are simultaneously
estimated with the SOPs’ states [10–12].

Collaboration generally improves navigation [13, 14]. In
collaborative opportunistic navigation (COpNav), multi-
ple receivers share their observations of SOPs in the en-
vironment to construct and continuously refine a global
signal landscape map. Such signal landscape could be
cloud-hosted, such that whenever GNSS signals become
inaccessible or untrustworthy, the receivers continue navi-
gating with the aid of this map [15,16]. The quality of the
constructed map depends on the quality of the observa-
tions and the spatial geometry between the SOPs and re-
ceivers. In [17–20], the quality of the constructed map was
addressed by optimizing the receivers’ trajectories, while
assuming the initial location of all receivers to be random.

This paper considers the following two problems. The
first problem assumes that multiple receivers with random
initial states are dropped in a planar COpNav environ-
ment with one unknown SOP. Each receiver has a priori
knowledge about its own states (e.g., from GNSS observ-
ables). The receivers draw pseudorange observations from
the SOP, which are fused through a centralized estimator
that estimates the states of the SOP. Where should an ad-
ditional collaborating receiver be placed to minimize the
uncertainty about the SOP’s states? The second prob-
lem considers a planar environment comprising N mobile
receivers with knowledge about their own states, making
pseudorange observations on one unknown terrestrial SOP,
and fusing their observations through a centralized esti-
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mator. What is the optimal estimation performance as a
function of time and N?

Similar questions to the first problem this paper consid-
ers have arisen in other contexts, such as optimal GNSS
SV distribution and selection [21–24] and optimal sen-
sor placement for target localization and tracking [25–28].
Common metrics to assess the quality of the spatial geom-
etry are the geometric dilution of precision (GDOP) [29],
the determinant of the GDOP matrix [21], and the area
of a polygon inscribed in the unit circle whose vertices are
the line of sight (LOS) vectors from the receiver (target)
to the SVs (sensors) [30]. While previous work considered
optimizing the location of a constellation of SVs or a group
of sensors with respect to a specified criterion, this paper
assumes that N of the receivers are arbitrarily placed, and
treats the problem of optimal placement of an additional
(N + 1)st receiver to improve the estimate of the SOP’s
states. To this end, the GDOP minimization, determinant
of GDOP matrix maximization, and area maximization
problems are compared and it is demonstrated that these
three optimization problems are comparable. Then, it is
shown that the area maximization problem is piecewise-
concave with a simple analytical solution.

The remainder of this paper is organized as follows. Sec-
tion II describes the SOP dynamics and receivers’ obser-
vation model. Section III formulates the optimal receiver
placement problem as GDOP minimization, determinant
of GDOP matrix maximization, and area maximization
and compares these optimization problems. The piecewise-
concavity of the area maximization problem is also shown
and the optimal solution is specified. Section IV derives
the optimal estimation performance as a function of time
and number of receivers. Concluding remarks are given in
Section V.

II. MODEL DESCRIPTION

A. SOP Dynamics Model

The SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter, and its state vector will
consist of its planar position states rs , [xs, ys]

T
and clock

error states cxclk,s , c
[

δts, ˙δts

]

, where c is the speed

of light, δts is the clock bias, and δ̇ts is the clock drift
[12]. The SOP’s discrete-time (DT) model sampled at a
constant sampling interval T is given by

xs (k + 1) = Fs xs(k) +ws(k), k = 1, 2, . . . ,

where xs =
[

r
T

s , cx
T

clk,s

]T

, ws is a DT zero-mean white

noise sequence with covariance Qs, and

Fs = diag [I2×2, Fclk] , Fclk=

[

1 T
0 1

]

.

B. Observation Model

The pseudorange observation made by the ith receiver on
the SOP, after discretization and mild approximations dis-
cussed in [12], is related to the SOP states by

zi(k) = ‖rri(k)− rs‖2 + c · [δtri(k)− δts(k)] + vi(k), (1)

where rri , [xri , yri ]
T
and δtri are the position and clock

bias of the receiver, respectively, and vi is a DT zero-mean
white Gaussian sequence with variance σ2

i .

III. OPTIMAL RECEIVER PLACEMENT

This section tackles the question of: where to optimally
place a receiver in a COpNav environment comprising N
pre-deployed receivers and one unknown SOP? The follow-
ing subsection will formulate and compare three optimiza-
tion problems: GDOP minimization, determinant maxi-
mization, and area maximization. Subsequently, the con-
vexity of these problems is analyzed. Finally, an analytical
solution to the area maximization problems is derived.

A. Problem Formulation

Consider a planar environment comprising N arbitrarily
placed receivers with knowledge about their own states
and one unknown SOP. The receivers draw pseudorange
observations {zi}

N

i=1 from the SOP, and these observations
are fused through a centralized estimator whose role is to
estimate the state vector of the SOP. It is desired to deploy
an additional receiver to a location that will result in the
maximum improvement of the SOP’s state vector estimate.
The measurement residual computed by the centralized es-
timator has a first-order approximation of its Taylor series
expansion about an estimate of the SOP’s state vector x̂s

given by
∆z = H∆xs + v,

where ∆z , z − ẑ, i.e., the difference between the ob-
servation vector z , [ z1, . . . , zN+1 ]

T
and its estimate ẑ;

∆x , xs− x̂s, i.e., the difference between the SOP’s state
vector xs and its estimate x̂s; v , [ v1, . . . , vN+1 ]

T; and H

is the Jacobain matrix evaluated at the estimate x̂s, which
is given by

H =















−
xr1

−x̂s

‖rr1
−r̂s‖

−
yr1

−ŷs

‖rr1
−r̂s‖

−1 0

−
xr2

−x̂s

‖rr2
−r̂s‖

−
yr2

−ŷs

‖rr2
−r̂s‖

−1 0

...
...

...
...

−
xrN+1

−x̂s

‖rrN+1
−r̂s‖

−
yrN+1

−ŷs

‖rrN+1
−r̂s‖

−1 0















. (2)

Assuming the observation noise {vi}
N+1
i=1 to be indepen-

dent and identically distributed, i.e., cov (v) = σ2I, and
the centralized estimator to be a static, weighted least-
squares estimator, it is obvious that all SOP’s states are
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observable, except for the SOP’s clock drift δ̇ts, for all
N ≥ 2, and as long as there exists at least three receivers
that are not collinear with the LOS vectors connecting the
SOP and the receivers [12]. Define the truncated SOP

state vector as x′
s , [xs, ys, cδts ]

T and adjust the estima-
tor to estimate x

′
s accordingly. Then, H reduces to

H=











−1̂T

1 −1

−1̂T

2 −1
...

...

−1̂T

N+1 −1











=











− cos(φ1) − sin(φ1) −1
− cos(φ2) − sin(φ2) −1

...
...

...
− cos(φN+1) − sin(φN+1) −1











,

where 1̂i ,
rri

−r̂s

‖rri
−r̂s‖

, which is geometrically a unit LOS

vector pointing from the SOP’s position estimate r̂s to
the ith receiver position rri . Without loss of generality,
assume a coordinate frame centered at r̂s and φi to be
the angle measured counterclockwise from the LOS vector
connecting the SOP and the first receiver (i.e., φ1 = 0).
The weighted least-squares estimate x̂

′
s and associated es-

timation error covariance Px̃
′

s
x̃

′

s
are given by

x̂
′
s =

(

HTH
)−1

HT
z, Px̃

′

s
x̃

′

s
= σ2

(

HTH
)−1

.

The matrix
(

HTH
)−1

is commonly referred to as the
GDOP matrix. Hence, the quality of the estimation de-
pends on the receiver-to-SOP geometry and the pseudo-
range observation noise variance. The GDOP factor is

defined as GDOP ,

√

tr
[

(HTH)
−1

]

. The GDOP pro-

vides a simple scalar characterization of the receiver-to-
SOP geometry– the lower the GDOP, the more favorable
the geometry [29]. Therefore, the receiver placement prob-
lem can be cast as the GDOP minimization problem

minimize
φN+1

√

tr
[

[HT(φN+1)H(φN+1) ]
−1

]

, (3)

where φN+1 is the angle of the unit LOS vector from the
SOP to the additional (N + 1)st receiver location.

The GDOP is approximately minimized when det
(

HTH
)

is maximized, since the adjoint of HTH varies less with
the geometry of the receiver placement [29]. Therefore, an
alternative optimization problem to (3) is

maximize
φN+1

det
[

HT(φN+1)H(φN+1)
]

. (4)

It can be shown that det
(

HTH
)

is related to the area of
the polytope inscribed in the unit circle, whose vertices
are defined by the SOP-to-receiver unit LOS vector end-
points [21]. Hence, the optimization problem can be refor-
mulated as a polytope area maximization problem. In a
planar scenario composed of three receivers, the relation-
ship is exact, i.e., maximizing det

(

HTH
)

simultaneously

maximizes the area of the triangle whose vertices are de-
fined by the unit LOS vectors. This is due to the fact
that H is now a square, invertible matrix and the area
is A = 1

2

√

det(HTH) = 1
2 det(H). For more than three

receivers, the relationship is exact for regular polygons,
but approximate for non-regular polygons. Specifically, a
polygon inscribed in the unit circle that simultaneously
maximizes the determinant and maximizes the area is a
regular polygon [30]. For non-regular polygons, the rela-
tionship is “almost exact” and the discrepancy is minimal.
To see this, N + 1 receivers were placed randomly around
an SOP, where the ith receiver position was chosen such
that φi ∼ U(0, 2π), for i = 2, . . . , N + 1, and φ1 = 0 for a
total of 105 random configurations. For each configuration,
the corresponding GDOP and area were calculated, which
are plotted in Fig. 1(a)–(d) for N = 2, . . . , 5, respectively.
Subsequently, for each of the configurations, the first N
receivers’ positions were fixed and the (N + 1)st receiver
was placed so to optimize the GDOP then to optimize the
area. The resulting optimal GDOP versus optimal area
are plotted in Fig. 1(e)–(h) for N = 2, . . . , 5, respectively.

The following can be concluded from these plots. First,
placing the (N + 1)st receiver to optimize the area simul-
taneously optimizes the GDOP only for N = 2. Second,
for N > 2, placing the (N + 1)st receiver to optimize the
area approximately optimizes the GDOP. Third, the voids
in the “point cloud” in the optimal area versus optimal
GDOP plot [Fig. 1(e)–(h)] compared to the area versus
GDOP plot [1(a)–(d)] is due to optimizing the placement
of the (N + 1)st receiver, which effectively increases the
area (decreases the GDOP), pushing the “point cloud” to-
wards the right (bottom). Fourth, when N+1 receivers are
arranged into a regular polygon configuration, the theoret-
ical minimum GDOP, given by GDOPmin =

√

5/(N + 1)
is achieved (dotted red line in Fig. 1) [22] and the area
simultaneously achieves its maximum value.

Motivated by these results, an alternative optimization
problem to (3) and (4) is proposed, which aims to maxi-
mize the area A of the polygon over the angle of the unit
LOS vector of interest, namely

maximize
φN+1

A (φN+1) = AN +∆A (φN+1) , (5)

where AN is the total area for N receivers, which can be
derived from the the sum of triangles area as

AN =
N
∑

i=1

1

2
sin(θi), (6)

where θi , φi+1−φi for i = 1 . . . N−1, and θN , 2π−φN ;
and ∆A (φN+1) is the change in area resulting from placing
the (N+1)st receiver at φN+1, where φi ≤ φN+1 ≤ φi+1 <
2π. The change in area ∆A (φN+1) is given by

∆A (φN+1) = (7)

1

2
[sin(φN+1 − φi) + sin(θi − φN+1 + φi)− sin(θi)] .
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Fig. 1. N + 1 receivers were randomly placed around an SOP for a
total of 105 configurations. Fig. (a)–(d) correspond to N = 2, . . . , 5,
respectively, and Fig. (e)–(f) correspond to N = 2, . . . , 5, respec-
tively. For each configuration, the resulting area and the resulting
GDOP were computed and plotted in Fig. (a)–(d). Each point in
the point cloud represent the area and corresponding GDOP for a
particular configuration. Then, for each previous configuration, the
first N receiver locations were fixed and the (N + 1)st receiver was
optimally placed to optimize the GDOP and then to optimize the
area. Each point in the point cloud plotted in Fig. (e)–(h) represent
the optimal area versus optimal GDOP for a particular configuration.

A depiction of A (φN+1) is illustrated in Fig. 2.

(a) (b)

1 1

11

Fig. 2. (a) Polygon inscribed in the unit circle formed by the end-
points of the unit LOS vectors from the SOP to four randomly-
deployed receivers depicted in Fig. 3(a). The area AN is highlighted
in green. (b) Resulting polygon due to introducing an additional
fifth receiver depicted in Fig. 3(a). The change in area ∆A (φN+1)
due to introducing the (N + 1)st receiver is highlighted in red.

It will be discussed in the following subsection that unlike

(3) and (4), which are neither convex nor concave, necessi-
tating a general-purpose numerical nonlinear optimization
solver, the optimization problem (5) is piecewise-concave
with a simple analytical solution.

B. Convexity Analysis

The term HTH in the optimization problems (3) and (4)
can be readily shown to be

HTH =

















N+1
∑

i=1

cos2 φi

N+1
∑

i=1

cosφi sinφi

N+1
∑

i=1

cosφi

N+1
∑

i=1

sinφi cosφi

N+1
∑

i=1

sin2 φi

N+1
∑

i=1

sinφi

N+1
∑

i=1

cosφi

N+1
∑

i=1

sinφi N + 1

















.

It is obvious that the optimization functions in (3) and
(4) are neither convex nor concave. However, while the
optimization function (5) is neither convex nor concave,
it is piecewise-concave. A depiction of these functions is
illustrated in Fig. 3.
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√

tr
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[H
T
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N
+
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[H
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N
+
1
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(φ
N
+
1
)
]−

1
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Fig. 3. (a) Four randomly placed receivers (green) with respective
angles φi ∈ { 0, 1.892, 2.043, 3.295 } rad estimating the state vector
of an unknown SOP (blue). The optimal receiver placement problem
is to place an additional receiver (red) at an angle φN+1 that will
minimize the GDOP (3), maximize the determinant of the GDOP
matrix (4), or maximize the area of the polygon (5). (b)–(d) The
corresponding GDOP, determinant, and area optimization functions
due to different placements of the additional receiver.

C. Optimal Solution to Area Maximization

The special property of piecewise-concavity of the area
maximization problem (5) allows for a simple analytical
solution for the receiver placement problem. This is sum-
marized in the following theorem.

Theorem 1. The optimal placement with respect to the
area maximization criterion (5) of a receiver to an en-
vironment comprising N arbitrarily placed receivers and
one SOP is anywhere on a LOS vector from the SOP at
an angle φ⋆

N+1 = 1
2 max

i
θi, for i = 1, . . . , N − 1, where

θi , φi+1 − φi and θN , 2π − φN .
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Proof. First, it will be shown that in a particular θi ∈
[0, 2π), the angle that maximizes the change in area is at

φ⋆(i)
N+1, where φ⋆(i)

N+1 , φi + α⋆
i and α⋆

i = 1
2θi, where αi is

defined as the angle sweeping θi, i.e., αi , φN+1 − φi for
0 ≤ αi ≤ θi.

Parameterizing ∆A (φN+1) by αi in (7) yields

∆A (αi) =
1

2
[sin(αi) + sin(θi − αi)− sin(θi)] , (8)

and applying the first-order necessary condition for opti-
mality yields

d∆A (αi)

dαi

=
1

2
cos(αi)−

1

2
cos(θi − αi) ≡ 0

⇒ α⋆
i =

1

2
θi + πk.

Substituting α⋆ into the definition of 0 ≤ αi ≤ θi yields
− 1

2θi ≤ πk ≤ 1
2θi. Since the angle between any two known

receivers is 0 ≤ θi < 2π, k is bounded by −π < πk < π.
The only value of k that satisfies this inequality is k = 0.
Therefore, α⋆

i = 1
2θi is the only critical angle in θi.

Furthermore, since 0 ≤ θi < 2π, the critical angle is
0 ≤ α⋆

i < π. The second order necessary condition for
optimality, evaluated at this critical angle is

d2∆Ai

dα2
i

= −
1

2
sin(αi)−

1

2
sin(θi − αi)

= −
1

2
sin(α⋆

i )−
1

2
sin(2α∗

i − α∗
i )

= − sin(α⋆
i ). (9)

Since (9) is always negative, the change in area in (7)
is concave over φi + θi, and α⋆ is the global maximizer.
The above analysis holds ∀θi, and the change in area over
[0, 2π) is piecewise-concave with N concave regions, where

each region corresponds to {θi}
N

i=1.

Next, it will be shown that the largest change in area
∆A (φN+1) is achieved when the largest region θi is cho-
sen, i.e., the receiver is positioned at φ⋆

N+1 = φimax
+α⋆

imax
,

where φimax
= φimax+1

− θimax
, θimax

, max
i

{θi}, α⋆
imax

=

1
2θimax

, where i = 1, . . . , N .

Substituting for α⋆
i = 1

2θi into (8) yields

∆A (α⋆
i ) = sin

(

1

2
θi

)

−
1

2
sin (θi) .

Taking the derivative with respect to θi yields

d∆A (αi)

dθi
=

1

2
cos

(

1

2
θi

)

−
1

2
cos(θi). (10)

Equation (10) is non-negative from
[

0, 4π
3

]

, i.e., increasing

the region θi ∈
[

0, 4π
3

]

increases the resulting area. Hence,

choosing θimax
in this range guarantees the largest change

in area. In
(

4π
3 , 2π

)

, (10) is negative, therefore the change

in area begins to decrease as θi sweeps
(

4π
3 , 2π

)

. To verify
that choosing θimax

is the optimal choice, it is shown that
∆A (θi) < ∆A (θimax

), when θi ∈ [0, 2π − Γ], where Γ =
θimax

= 4π
3 + ε, 0 < ε < 2π

3 . Hence,

∆A (θimax
) > ∆A (θi)

sin

(

1

2
Γ

)

−
1

2
sin(Γ) > sin

[

1

2
(2π − Γ)

]

−
1

2
sin(2π − Γ)

−
1

2
sin(Γ) >

1

2
sin(Γ).

Since sin(Γ) < 0, ∀ ε ∈
(

0, 2π
3

)

, the above inequality holds
and ∆A (θimax

) > ∆A (θi).

IV. OPTIMAL ESTIMATION PERFORMANCE

ANALYSIS

This section analyzes the optimal SOP estimation perfor-
mance as a function of the number of mobile receivers in
the environment and time. The optimal performance pre-
scribes the minimum number of receivers needed to achieve
a certain mapping accuracy within a desired time horizon.

A. Problem Formulation

The following problem is considered. Given a set of N mo-
bile receivers with knowledge about their own states mak-
ing pseudorange observations on an unknown terrestrial
SOP. Assuming that these observations are fused through
a dynamic centralized estimator, specifically an extended
Kalman filter (EKF), to estimate the state vector of the
SOP, what is the optimal estimation performance as a
function of N and time?

In contrast to Section III, which analyzed the optimal
placement of the (N + 1)st receiver, given a set of N
randomly-distributed receivers, the optimal performance
for the problem here is a function of the placement of
all the receivers, simultaneously. Specifically, the opti-
mization is over all the receiver angles {φi}

N
i=1. Assum-

ing the receivers’ observation noise to be independent and
identically-distributed, the optimal achieved performance
is essentially determined by the geometric placement of
the receivers. The lowest GDOP is achieved when the
unit LOS vectors pointing from the SOP to the receivers
reside at the vertices of a regular polygon [22]. Therefore,
an environment consisting of N optimally-placed receivers,
each drawing pseudorange observations on the same SOP
modifies the Jacobian matrix in (2) to take the form

H⋆ =











− cos 2π0
N

− sin 2π0
N

−1 0
− cos 2π

N
− sin 2π

N
−1 0

...
...

...
...

− cos 2π(N−1)
N

− sin 2π(N−1)
N

−1 0











. (11)
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Next, consider the estimation error covariance update
equation of the EKF in the information form

P−1(k+1|k+1) = P−1(k+1|k) +
1

σ2
HT(k+1)H(k+1),

where P(k + 1|k + 1) is the estimation error covariance
and P(k + 1|k) is the prediction error covariance. The
information associated with the latest observation (at time
k+1) is Υ(k+1) = 1

σ2H
T(k+1)H(k+1). If the receivers

are placed optimally, plugging (11) into Υ(k + 1) yields

Υ(k + 1) = diag

[

N

2
,
N

2
, N, 0

]

,

which is independent of the SOP’s state vector estimate
and receiver trajectories. Noting that the SOP’s dynamics
are linear, it is obvious that the prediction error covariance
P(k + 1|k) is then independent of the SOP’s state vector
estimate. Therefore, if the receivers maintain their opti-
mal distribution around the latest SOP’s position estimate
r̂s at the time instants when new observations are taken,
the estimation error covariance can be propagated off-line,
without knowledge of the SOP’s state vector estimates nor
the receivers’ trajectories. The resulting estimation error
covariance time history is the optimal estimation error per-
formance as a function of time and number of receivers N .

B. Simulation Results

This subsection presents simulation results demonstrating
the optimal estimation performance as a function of time
and N . Moreover, the estimation error obtained from ran-
dom receiver trajectories is compared with the optimal es-
timation performance.

The optimal posterior estimation error covariance was gen-
erated using the following settings: T = 0.2 s, σ2 =
100m2, Ps(0| − 1) = (103) · diag [1, 1, 3, 0.3], and Qs =
diag

[

02×2, c
2Qclk,s

]

, where

Qclk,s=

[

h0

2 T+ 2
3π

2h−2T
3 π2h−2T

2

π2h−2T
2 2π2h−2T

]

,

with h0 = 8.0 × 10−20, and h−2 = 4.0 × 10−23 as the
frequency random walk and white frequency coefficients,
respectively [9].

Fig. 4 illustrates the logarithm of the determi-
nant of the posterior estimation error covariance,
log {det [P⋆(k + 1|k + 1)]}, which is proportional to the
volume of the estimation uncertainty ellipsoid [17], as a
function of time and N . This plot provides the minimum
achievable uncertainty of the states of an unknown SOP
as a function of time and N . This plot can be utilized to
determine the minimum number of receivers that must be
deployed in an environment to achieve a desired estimation
uncertainty within a specified time horizon.

lo
g
{
d
et
[P

⋆
(k

+
1|
k
+
1)
]}

Time (s) Number of Receivers (N)

Fig. 4. The logarithm of the determinant of the optimal posterior
estimation error covariance log {det [P⋆(k + 1|k + 1)]} expressed as
a function of time and N ∈ {3, 4, . . . 15}.

To compare the optimal estimation performance versus
receiver trajectories that do not maintain the optimal
receiver placement around the SOP’s position estimate,
four receivers were randomly placed around the SOP. The
SOP’s initial estimate was drawn according to x̂s(0|−1) ∼

N [xs(0),Ps(0| − 1)], with xs(0) = [0, 0, 1, 0.1]
T
. The ini-

tial state vector of the ith receiver was set to xri(0) =
[

rri(0), ṙri(0), cδtri(0), cδ̇tri(0)
]T

, where ṙri(0) = [0, 0]
T
,

cδtri(0) = 10, and cδ̇tri(0) = 1. The receivers’ ini-
tial positions rri(0) are specified in Table I. The re-
ceivers’ initial positions were varied across three simula-
tion runs, by varying an offset {bj}

3
j=1. Subsequently,

the receivers moved according to a velocity random walk
motion with an acceleration process noise power spectral
density q̃x = q̃y = 0.1 (m/s2)2 [16]. The receivers’ tra-
jectories across the three simulation runs (corresponding
to j = 1, 2, 3) were the same in order to analyze the ef-
fect of the initial GDOP. The time history of the result-
ing log

{

det
[

Pj(k + 1|k + 1)
]}

corresponding to j = 1, 2, 3
versus the optimal log {det [P⋆(k + 1|k + 1)]} are plotted
in Fig. 5.

TABLE I

Simulation Settings for the Receivers’ Initial Position

Parameter Value

r
j
r1
(0) [−150.8, 169.3]T + bj

r
j
r2
(0) [24.6, −13.7]

T
+ bj

r
j
r3
(0) [−25.6, −45.5]

T
+ bj

r
j
r4
(0) [105.7, −29.6]T + bj

b1, b2, b3 [0, 0]
T
, [125, 0]

T
, [200, 0]

T

V. CONCLUSIONS

This paper studied the problem of optimal receiver place-
ment in a COpNav environment comprising N pre-
deployed receivers with a random initial distribution.
Three optimization problems were formulated and com-
pared: minimizing the GDOP, maximizing the determi-
nant of the GDOP matrix, and maximizing the area of
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(a) (b)

(c) (d)

lo
g
d
et
[P

(k
+
1|
k
+
1)
] Optimal placement

Trajectories in (c)

Trajectories in (b)

Trajectories in (d)

Fig. 5. The logarithm of the determinant of the optimal posterior es-
timation error covariance log {det [P⋆(k + 1|k + 1)]} versus the pos-
terior estimation error covariance due to three simulation runs with
the receiver trajectories in (b)–(d). The receivers’ trajectories in
(b)–(d) are the same. The receivers’ initial positions in (b)–(d) were
varied according to an offset bj to yield different initial GDOP qual-
ity: (b) low GDOP with b1, (c) medium GDOP with b2, and (d)
high GDOP with b3.

a polygon inscribed in the unit circle whose vertices are
the endpoints of unit LOS vectors from the SOP to the
receivers. It was shown that the area maximization prob-
lem is piecewise-concave with a simple analytical solution.
Moreover, this paper derived the optimal estimation per-
formance as a function of time and number of receivers in
the environment.

References

[1] J. Raquet and R. Martin, “Non-GNSS radio frequency nav-
igation,” in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, March 2008, pp. 5308–
5311.

[2] K. Pesyna, Z. Kassas, J. Bhatti, and T. Humphreys, “Tightly-
coupled opportunistic navigation for deep urban and indoor po-
sitioning,” in Proceedings of ION GNSS Conference, September
2011, pp. 3605–3617.

[3] V. Moghtadaiee and A. Dempster, “Indoor location fingerprint-
ing using FM radio signals,” IEEE Transactions on Broadcast-
ing, vol. 60, no. 2, pp. 336–346, June 2014.

[4] C. Yang, T. Nguyen, and E. Blasch, “Mobile positioning via
fusion of mixed signals of opportunity,” IEEE Aerospace and
Electronic Systems Magazine, vol. 29, no. 4, pp. 34–46, April
2014.

[5] P. Thevenon, S. Damien, O. Julien, C. Macabiau, M. Bousquet,
L. Ries, and S. Corazza, “Positioning using mobile TV based
on the DVB-SH standard,” NAVIGATION, Journal of the In-
stitute of Navigation, vol. 58, no. 2, pp. 71–90, 2011.

[6] K. Pesyna, Z. Kassas, and T. Humphreys, “Constructing a con-
tinuous phase time history from TDMA signals for opportunis-
tic navigation,” in Proceedings of IEEE/ION Position Location
and Navigation Symposium, April 2012, pp. 1209–1220.

[7] I. Bisio, M. Cerruti, F. Lavagetto, M. Marchese, M. Pastorino,
A. Randazzo, and A. Sciarrone, “A trainingless WiFi fingerprint
positioning approach over mobile devices,” IEEE Antennas and
Wireless Propagation Letters, vol. 13, pp. 832–835, 2014.

[8] Z. Kassas and T. Humphreys, “The price of anarchy in active
signal landscape map building,” in Proceedings of IEEE Global
Conference on Signal and Information Processing, December
2013, pp. 165–168.

[9] Z. Kassas, V. Ghadiok, and T. Humphreys, “Adaptive estima-
tion of signals of opportunity,” in Proceedings of ION GNSS
Conference, September 2014, pp. 1679–1689.

[10] Z. Kassas and T. Humphreys, “Observability analysis of oppor-
tunistic navigation with pseudorange measurements,” in Pro-
ceedings of AIAA Guidance, Navigation, and Control Confer-
ence, vol. 1, August 2012, pp. 1209–1220.

[11] ——, “Observability and estimability of collaborative oppor-
tunistic navigation with pseudorange measurements,” in Pro-
ceedings of ION GNSS Conference, September 2012, pp. 621–
630.

[12] ——, “Observability analysis of collaborative opportunistic nav-
igation with pseudorange measurements,” IEEE Transactions
on Intelligent Transportation Systems, vol. 15, no. 1, pp. 260–
273, February 2014.

[13] S. Wu, J. Kaba, S. Mau, , and T. Zhao, “Teamwork in GPS-
denied environments: Fusion of multi-sensor networks,” GPS
World, pp. 40–47, Oct. 2009.

[14] C. Yang and A. Soloviev, “Covariance analysis of spatial and
temporal effects of collaborative navigation,” NAVIGATION,
Journal of the Institute of Navigation, vol. 61, no. 3, pp. 213–
225, 2014.

[15] Z. Kassas, “Collaborative opportunistic navigation,” IEEE
Aerospace and Electronic Systems Magazine, vol. 28, no. 6, pp.
38–41, 2013.

[16] ——, “Analysis and synthesis of collaborative opportunistic
navigation systems,” Ph.D. dissertation, The University of
Texas at Austin, USA, 2014.

[17] Z. Kassas and T. Humphreys, “Motion planning for optimal
information gathering in opportunistic navigation systems,” in
Proceedings of AIAA Guidance, Navigation, and Control Con-
ference, August 2013, 551–4565.

[18] Z. Kassas, J. Bhatti, and T. Humphreys, “Receding horizon
trajectory optimization for simultaneous signal landscape map-
ping and receiver localization,” in Proceedings of ION GNSS
Conference, September 2013, pp. 1962–1969.

[19] Z. Kassas, A. Arapostathis, and T. Humphreys, “Greedy mo-
tion planning for simultaneous signal landscape mapping and
receiver localization,” IEEE Journal of Selected Topics in Sig-
nal Processing, vol. 9, no. 2, pp. 247–258, March 2015.

[20] Z. Kassas and T. Humphreys, “Receding horizon trajectory
optimization in opportunistic navigation environments,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 51,
no. 2, pp. 866–877, April 2015.

[21] P. Massat and K. Rudnick, “Geometric formulas for dilution of
precision calculations,” NAVIGATION, Journal of the Institute
of Navigation, vol. 37, no. 4, pp. 379–391, 1990.

[22] N. Levanon, “Lowest GDOP in 2-D scenarios,” IEE Proceedings
Radar, Sonar and Navigation, vol. 147, no. 3, pp. 149–155, 2000.

[23] I. Sharp, K. Yu, and Y. Guo, “GDOP analysis for positioning
system design,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 7, pp. 3371–3382, 2009.

[24] N. Blanco-Delgado and F. Nunes, “Satellite selection method for
multi-constellation GNSS using convex geometry,” IEEE Trans-
actions on Vehicular Technology, vol. 59, no. 9, pp. 4289–4297,
November 2010.

[25] H. Zhang, “Two-dimensional optimal sensor placement,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 25, no. 5,
pp. 781–792, May 1995.

[26] D. Jourdan and N. Roy, “Optimal sensor placement for agent
localization,” in Proceedings of IEEE/ION Position, Location,
And Navigation Symposium, April 2006, pp. 128–139.

[27] J. Isaacs, D. Klein, and J. Hespanha, “Optimal sensor place-
ment for time difference of arrival localization,” in Proceedings
of IEEE Conference on Decision and Control, December 2009,
pp. 7878–7884.

[28] C. Yang, L. Kaplan, E. Blasch, and M. Bakich, “Optimal place-
ment of heterogeneous sensors for targets with Gaussian pri-
ors,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 3, pp. 1637–1653, July 2013.

[29] J. Spilker, Jr., Global Positioning System: Theory and Appli-
cations. Washington, D.C.: American Institute of Aeronautics
and Astronautics, 1996, ch. 5: Satellite Constellation and Geo-
metric Dilution of Precision, pp. 177–208.

[30] N. Blanco-Delgado, F. Nunes, and G. Seco-Granados, “Relation
between GDOP and the geometry of the satellite constellation,”
in International Conference on Localization and GNSS, Jun.
2011, pp. 175–180.

7


