MS PROGRAM
The MS Program is designed to give you a **solid education in a specialized field**. In the first 1-2 semesters students primarily take courses to fulfill degree requirements. In the next 1-2 semesters, students focus on their **project/thesis**.

Note: The course workload is typically heavier than at undergraduate level, the courses are more demanding and much more is expected from the students at the MS level.

Students choose one of two options depending on educational and professional goals:

- **Project path (non-thesis)**: Students collaborate with industry partners in projects, perform a research project, do an internship project or work in a relevant project. Concludes with a **Project Report** and technical discussion and or presentation.

- **Research path (thesis)**: Students work on industrial or academic research. Concludes with a **Thesis** and final oral defense.

Different paths, **Same diploma**.
MS Project Path (Non-Thesis): Minimum 30 credits*

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter-graded graduate courses</td>
<td>Minimum 24 credits</td>
</tr>
<tr>
<td>ECE 7080 Ethics and Professionalism</td>
<td>1 credit</td>
</tr>
<tr>
<td>Individual Studies</td>
<td>Maximum 5 credits **</td>
</tr>
<tr>
<td>MS Non-Thesis Exam</td>
<td>Project requirements</td>
</tr>
<tr>
<td>ECE Graduate Courses: Minimum 15 credits ***</td>
<td></td>
</tr>
<tr>
<td>Advanced ECE Graduate Courses</td>
<td>Minimum 6 credits ***</td>
</tr>
<tr>
<td>ECE 6070 (Project Management Course)</td>
<td>Mandatory; does not count as an advanced course</td>
</tr>
<tr>
<td>Courses in a related field</td>
<td>Maximum of 9 credits such as engineering, biological sciences, physics, math, chemistry, business, economics, ACCAD and statistics.</td>
</tr>
</tbody>
</table>

Note that before starting the Non-Thesis Exam projects, students need advisor approval. In addition, students may be required to submit a one-page project proposal to their advisor for approval.

* Submit an advisor-approved MS plan of study to the ECE Program Coordinator by the end of the first semester.

** Ohio State graduates who passed ECE 3080 are automatically exempt, and the Individual Studies maximum increases by 1 credit.
| **Letter-graded graduate courses** | Minimum 18 credits | **ECE Graduate Courses**
Minimum 9 credits *** |
|----------------------------------|--------------------|-------------------------|
| ECE 7080 Ethics and Professionalism | 1 credit | **Advanced ECE Graduate Courses**
Minimum 6 credits *** |
| ECE 6999 Thesis Research | At least 10 credits | Courses in a related field
Maximum of 9 credits such as
engineering, biological sciences, physics, math,
chemistry, business, economics, ACCAD, statistics |
| Individual Studies (ECE 6193) | Maximum 1 credit** | |
| MS Thesis Exam | Thesis requirements | Thesis and oral examination |

* Submit an advisor-approved MS plan of study to the ECE Program Coordinator by the end of the first semester.

** Ohio State graduates who passed ECE 3080 are automatically exempt, and the Individual Studies maximum increases by 1 credit.
• **Discuss** MS Plan of Study with academic advisor and got **approval**

• **Submit** the Advisor-approved MS Plan of Study through a scheduled 15-minute appointment with Ms. Beth Bucher through online calendar https://go.osu.edu/bucher_9_cal or by contacting her by email

• The plan of study can be changed multiple times, upon approval of student’s advisor (column reserved for changes);

• If a student changes advisor, either the new advisor must approve the existing plan of study or a new approved plan of study must be submitted with the change of advisor form;

• **For graduation clearance, the MS plan of study needs to be on file in the ECE office and match the courses actually taken**
<table>
<thead>
<tr>
<th>Admit term, semester & year: (Ex: autumn 2016)</th>
<th>Second Semester & Year:</th>
<th>Third Semester & Year:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course #</td>
<td>Credits</td>
<td>Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT SUB TOTAL:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Semester & Year:</th>
<th>Fifth Semester & Year:</th>
<th>Sixth Semester & Year:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course #</td>
<td>Credits</td>
<td>Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT SUB TOTAL:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M.S. Non-Thesis Option or Project Path Checklist

- 30 or more graduate credits with a GPA of 3.0 or better, of which:
 - At least 24 credits must be letter-graded graduate level courses (No S/U), of which:
 - At least 15 credits must be letter-graded ECE graduate courses, one of which is ECE 6070 Project Management, and must be completed within the first 2 semesters. Does not count as advanced.
 - At least 3 credits must be ECE 6080 or above (advanced level) completed at OSU.
 - ECE 6070 (Project Management) does not count as an advanced requirement.
 - A maximum of 6 credits are allowed in a related field (such as engineering, biological sciences, physics, math, chemistry, business, economics, & ACCAD) completed at OSU.
 - A maximum of 6 credits are allowed in a related field (such as engineering, biological sciences, physics, math, chemistry, business, economics, & ACCAD).
 - ECE 7080 (Ethics & Professionalism) 1 credit. Mandatory for those admitted autumn 2016 or after. OSU students that have passed ECE 5080 are automatically exempt and the individual study maximum increases by 1 credit.
 - A maximum of 6 credits of Individual Study (ECE 6102) is permitted.
 - Satisfactory final written exam approved by faculty committee.

M.S. Thesis Option or Research Path Checklist

- 30 or more graduate credits with a GPA of 3.0 or better, of which:
 - At least 10 credits of thesis research credit (ECE 6060).
 - At least 20 credits of graduate course work, of which:
 - At least 10 credits are letter-graded graduate level courses (no S/U), of which:
 - At least 2 credits are ECE courses, of which:
 - At least 5 credits are ECE 6080 or above (advanced level) completed at OSU.
 - Maximum of 9 credits are allowed in a related field (such as engineering, biological sciences, physics, math, chemistry, business, economics, & ACCAD).
 - ECE 7080 (Ethics & Professionalism) 1 credit. Mandatory for those admitted autumn 2016 or after. OSU students that have passed ECE 5080 are automatically exempt and the individual study maximum increases by 1 credit.
 - A maximum of 6 credits of Individual Study (ECE 6102) is permitted.
 - Satisfactory final oral exam and thesis approval by faculty committee.
Example of Workload

Example 1

Typically students take 3-4 courses per Semester

<table>
<thead>
<tr>
<th>First Term</th>
<th>Fall 2020</th>
<th>Second Term</th>
<th>Spring 2021</th>
<th>Third Term</th>
<th>Summer 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course #</td>
<td>Credits</td>
<td>Changes</td>
<td>Course #</td>
<td>Credits</td>
<td>Changes</td>
</tr>
<tr>
<td>3 ECE courses (9 credits)</td>
<td>graduate, letter graded</td>
<td>4 ECE courses (12 credits)</td>
<td>graduate, letter graded</td>
<td>Independent Study (5 credits)</td>
<td>work on your MS Project (S/U graded)</td>
</tr>
<tr>
<td>1 CSE course (3 credits)</td>
<td>graduate, letter graded</td>
<td>Ethics course (1)</td>
<td>S/U graded</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUB TOTAL CREDITS:

<table>
<thead>
<tr>
<th>Fourth Term</th>
<th>Semester & Year</th>
<th>Fifth Term</th>
<th>Semester & Year</th>
<th>Sixth Term</th>
<th>Semester & Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course #</td>
<td>Credits</td>
<td>Changes</td>
<td>Course #</td>
<td>Credits</td>
<td>Changes</td>
</tr>
<tr>
<td>SUB TOTAL CREDITS:</td>
<td></td>
<td></td>
<td>SUB TOTAL CREDITS:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remember that you might need to take one or more English courses on top of the 30 credit hours requirement.
Example 2

Fall 2020

<table>
<thead>
<tr>
<th>Course #</th>
<th>Credits</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ECE courses</td>
<td>(9 credits)</td>
<td>graduate, letter graded</td>
</tr>
<tr>
<td>EDUTL 5902</td>
<td>(3 credits)</td>
<td>English Course</td>
</tr>
</tbody>
</table>

SUB TOTAL CREDITS:

Spring 2021

<table>
<thead>
<tr>
<th>Course #</th>
<th>Credits</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ECE courses</td>
<td>(6 credits)</td>
<td>graduate, letter graded</td>
</tr>
<tr>
<td>1 MAE course</td>
<td>(3 credits)</td>
<td>graduate, letter graded</td>
</tr>
<tr>
<td>Ethics course</td>
<td>(1 credit)</td>
<td>S/U graded</td>
</tr>
</tbody>
</table>

SUB TOTAL CREDITS:

Summer 2021

<table>
<thead>
<tr>
<th>Course #</th>
<th>Credits</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study</td>
<td>(5 credits)</td>
<td>work on your MS Project (S/U graded)</td>
</tr>
</tbody>
</table>

SUB TOTAL CREDITS:

Fall 2021

<table>
<thead>
<tr>
<th>Course #</th>
<th>Credits</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ECE courses</td>
<td>(6 credits)</td>
<td>graduate, letter graded</td>
</tr>
</tbody>
</table>

SUB TOTAL CREDITS:
Project Management Course (ECE 6070) is mandatory for all students in MS Project Path

Course Goals
- Learn principles of project management
- Apply project management tools and processes to Electrical and Computer Engineering problems
- Integrate technical aspects of Electrical and Computer Engineering with management tools to successfully complete projects in the Industry framework

Course Topics
- General principles of Project Management
- Project Management process and tools
- Team Culture and project communications
- Strategic Issues in Project Management, risk and crisis management
- Practical considerations/best practices in implementing PM in the Industry
- Case studies in Electrical and Computer Engineering
- Application of Project Management to Electrical and Computer Engineering Projects
- Project Documentation and reporting
Students in the MS Project Path have to work on a project

OBJECTIVES
- Apply technical concepts learned in class
- Encourage independent thinking and strengthen problem solving capabilities

TYPES OF PROJECTS
- Project in research areas in the department
- Work done during an internship
- Any relevant project in the student curriculum area
- Extending project from course

- Students must **submit a 1-page project proposal to their advisor** and get approval
- Students may get **credit** for work done in projects through independent study credit (up to 5 hours depending on amount/relevance of work, development of skills, outcomes)
- For their final exam, students are required to:
 - Select at least a 2-faculty examination committee (advisor must be included)
 - Write a project report and discuss it with advisor (mandatory)
 - Deliver a presentation/demo (optional – to the committe’s discretion)
Integrated Project-Based Learning Experience

• Balance technical and non-technical aspects of Project Management, Implementation, and Reporting, in line with industry standards

• Sequential/complementary approach with minimal overlapping, but flexible according to specific cases
PROJECT PATH (NON-THESIS)

- **COMMITTEE**: at least two Graduate Faculty members (including the student’s advisor); you can ask Prof. Fiorentini or Prof. Irem Eryilmaz to be your second committee member if you don’t have one.

- **REQUIREMENT**: project report (mandatory) and presentation/demo (advisor’s discretion).

- **DEADLINES**: Before starting your project, you have to submit a 1-page project proposal to your advisor to get your project approved. Reports (and/or slides) have to be turned in to the committee members AT LEAST 10 days before the graduate school exam deadline. After having revised your report, the committee members might ask you to apply changes to your report for it to be considered acceptable.

- **REPORT**: is private, nobody without permission, but the committee members, will see it.

https://gradsch.osu.edu/calendar/graduation
RESEARCH PATH (THESIS)

• COMMITTEE: at least two Graduate Faculty members (including the student’s advisor); you can ask Prof. I. Eryilmaz, Fiorentini, or Villarroel to be your second committee member if you don’t have one.

• REQUIREMENT: thesis and oral exam.

• DEADLINES: The first complete draft of the thesis has to be turned in to the committee members AT LEAST two weeks before the oral exam; The oral exam has to be schedule before the graduate school exam deadline. The final version of the thesis (which takes into account the committee members’ suggestions) has to be turned in to the graduate school by the deadline.

• THESIS: is public (uploaded on the OhioLINK).

https://gradsch.osu.edu/calendar/graduation
Other Critical Deadlines

REFUND

<table>
<thead>
<tr>
<th>Event</th>
<th>Autumn 2020 Calendar</th>
<th>Autumn Semester 14 Weeks (8/24 - 12/4)</th>
<th>First Session 7 Weeks (8/24 - 10/12)</th>
<th>Second Session 7 Weeks (10/15 - 12/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Day of Classes</td>
<td>Tuesday, August 25, 2020</td>
<td>Tuesday, August 25, 2020</td>
<td>Thursday, October 15, 2020</td>
<td></td>
</tr>
<tr>
<td>Last Day 100% Refund Period</td>
<td>Friday, August 28, 2020</td>
<td>Friday, August 28, 2020</td>
<td>Friday, October 16, 2020</td>
<td></td>
</tr>
</tbody>
</table>

ADDING / DROPPING COURSES

<table>
<thead>
<tr>
<th>Event</th>
<th>Autumn 2020 Calendar</th>
<th>Autumn Semester 14 Weeks (8/24 - 12/4)</th>
<th>First Session 7 Weeks (8/24 - 10/12)</th>
<th>Second Session 7 Weeks (10/15 - 12/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day to add course using online registration</td>
<td>Friday, August 28, 2020</td>
<td>Friday, August 28, 2020</td>
<td>Friday, October 16, 2020</td>
<td></td>
</tr>
<tr>
<td>Last day to add a course without a petition</td>
<td>Friday, September 4, 2020</td>
<td>Friday, September 4, 2020</td>
<td>Friday, October 23, 2020</td>
<td></td>
</tr>
<tr>
<td>Last date to drop a course without receiving a "W" on record</td>
<td>Friday, September 18, 2020</td>
<td>Friday, September 4, 2020</td>
<td>Friday, October 23, 2020</td>
<td></td>
</tr>
<tr>
<td>Last date to drop a course using online registration</td>
<td>Friday, September 18, 2020</td>
<td>Friday, September 4, 2020</td>
<td>Friday, October 23, 2020</td>
<td></td>
</tr>
<tr>
<td>Last date to drop a course without petitioning</td>
<td>Friday, October 30, 2020</td>
<td>Friday, September 25, 2020</td>
<td>Friday, November 13, 2020</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE PROJECTS
Radar-Based Identification of Cover Anomalies at Closed Coal Combustion Product Disposal Sites

sponsored by the Electric Power Research Institute and American Electric Power

Team-oriented, multi-disciplinary engineering approach to build a tool to detect the presence of certain anomalies in the region between the subsurface fly ash and the terrain surface and classify, profile, locate, and visualize these anomalies.

Potential Benefits

- OSU Faculty/Industry Experts mentoring
- Prevent exposure of people, animals, plants, and environment to fly ash
- Detect presence/location, classify type/profile of anomalies, and provide a visualization map
- Integrate Ground Penetrating Radar with a vehicular platform

Source: Lambot et al., “Measuring Soil Surface Water Content Using Full-Wave Inversion of Off-Ground GPR Data,” Universite Catholique de Louvain
A multi-disciplinary engineering approach to model, simulate, design, optimize, and measure return loss and coupling measurements of a sixteen-patch antenna array to be adopted in a 24-GHz automotive radar system.

Approach
- Designed a two-patch antenna operating at 24.1 GHz with a 200 MHz bandwidth.
- Developed an eight-patch antenna model, based on the two-patch model, using ten transformers to get an antenna $Z_{in} = 100 \, \Omega$.
- Developed/optimized a model and measured a prototype of a sixteen-patch antenna, operating at 24.1 GHz, with 17 dBi gain, 250 MHz bandwidth, and antenna $Z_{in} = 50 \, \Omega$.
Airborne Soil Moisture Mapping
A Lincoln-Buckeye Works MS Capstone Project

Team-oriented, multi-disciplinary engineering approach to build an airborne radiometer on fixed-wing and rotorcraft platforms, demonstrate in-flight data collection and mapping, and formulate a startup business plan

Top-notch mentors
- OSU ECE/MAE faculty
- MIT-LL mentors
- Agricultural Engineering experts
- UAV product development firm
- Experienced business people
- Potential users

Potential Benefits
- Identify dry/wet/flooded areas
- Reduce soil under/over-irrigation
- Improve water management
- Cost-savings
- Increase crop yield
- Foundation for 100+ applications
- Spin-off opportunities

Structural / Aerodynamic Integrity & Payload Design

Mechanical & Aerospace Engineering

Business & Marketing

Conformal Antennas & Arrays

Microwave Radiometry

Airborne Soil Moisture Mapping

Signal Processing & Algorithm Development

Signal Detection & A/D Conversion

Microcontroller Programming & Data Handling

Electrical & Computer Engineering

The Ohio State University
College of Engineering

Department of Electrical and Computer Engineering
Crop Health Monitoring and Early Disease Detection

An InFACT Discovery Theme Program

Team-oriented, multi-disciplinary engineering/agricultural/plant pathology approach for crop monitoring and early detection of diseases using airborne multi-spectral/hyper-spectral cameras, developing image/data processing algorithms for mapping and generation of action plans.
Polarimetric MIMO Radar
A Lincoln-Buckeye Works MS Capstone Project

Team-oriented, inter-disciplinary approach to build a software-defined radio, 2-Tx/2-Rx MIMO array with simultaneous polarimetry radar system, demonstrate in dismount measurements and quantify polarimetry/MIMO tradeoffs

Top-notch mentors
• OSU ECE/ESL faculty and researchers
• MIT-LL mentors
• Potential users

Potential Benefits
• Investigate/implement new technologies
• Improve orthogonal waveforms for simultaneous polarimetry
• Reduce data acquisition time
• Locate jamming/interference sources
• Foundation for real-time beamforming and multistatic coherent measurements on mobile and aerial platforms
• Future high-tech job opportunities
Smart Wheelchair

- Environmental Sensors
- Healthcare Sensors
- Wearables
- Localization (GPS, Beacon)
- Image Processing
- Cellular Network
- Web Application
- API
- IoT
Area of Focus

- Electronics
- Embedded System
- Machine Learning
- Robotics
- Image Processing
- Power Management
QUESTIONS