Gajowski, N., Martyniuk, P., Guo, B., Jones, A.H., Campbell, J.C., Grein, C.H., David,
https://doi.org/10.1063/5.0165800

Morath, C.P., Casias, L.K., Umana-Membreno, G.A., Webster, P.T., Grant, P.C., Maestas, D.,
Cowan, V.M., Faraone, L., Krishna, S. and Balakrishnan, G., “Carrier concentration and in-plane mobility in both non-intentionally and Si-doped InAsSb and InAs/InAsSb type-II superlattice materials for space-based infrared detectors.” Opto-Electron Rev, 2023.
https://doi.org/10.24425/opelre.2023.144554

Lewis, H.I.J., Jin, X., Guo, B., Lee, S., Jung, H., Kodati, S.H., Liang, B., Krishna, S., Ong, D.S.,
Campbell, J.C. and David, J.P.R., “Anomalous excess noise behavior in thick Al(0.85)Ga(0.15)As(0.56)Sb(0.44) avalanche photodiodes,” Sci Rep, 2023.
https://doi.org/10.1038/s41598-023-36744-7

https://doi.org/10.1364/OPTICA.476963

https://doi.org/10.1063/5.0154844

Braga, O.M., Delfino, C.A., Kawabata, R.M.S., Pinto, L.D., Vieira, G.S., Pires, M.P., Souza,
https://doi.org/10.24425/opelre.2023.144562

Bhardwaj, B., Bothra, U., Singh, S., Mills, S., Ronningen, T.J., Krishna, S. and Kabra, D.,
https://doi.org/10.1063/5.0153593


2022


https://doi.org/10.1109/JLT.2022.3185417

2021
https://doi.org/10.1007/s11664-021-09159-1
https://doi.org/10.1063/5.0022317
https://doi.org/10.1103/PhysRevB.104.085410
https://doi.org/10.1063/10.0022317
https://doi.org/10.1364/OE.418686
https://doi.org/10.1063/5.0035571
https://doi.org/10.1063/5.0039399
Guo, B., Jones, A.H., Lee, S., Kodati, S.H., Liang, B., Xue, X., Pfiester, N.A., Schwartz, M., Winslow, M., Grein, C.H., Ronningen, T.J., Krishna, S. and Campbell, J.C., “Optical constants of Al0.85Ga0.15As0.56Sb0.44 and Al0.79In0.21As0.74Sb0.26,” Appl Phys Lett, 2021.
https://doi.org/10.1063/5.0062035

https://doi.org/10.1109/TCSI.2021.3068595

https://doi.org/10.1109/tap.2021.3069522

2020

https://doi.org/10.1016/j.jlumin.2020.117581

https://doi.org/10.1063/5.0020000

https://doi.org/10.1016/j.jcrysgro.2020.125552

https://doi.org/10.3390/s20247047

Lee, S., Winslow, M., Grein, C.H., Kodati, S.H., Jones, A.H., Fink, D.R., Das, P., Hayat, M.M., Ronningen, T.J., Campbell, J.C. and Krishna, S., “Engineering of impact ionization characteristics in In0.53Ga0.47As/Al0.48In0.52As superlattice avalanche photodiodes on InP substrate,” Scientific Reports, 2020. https://doi.org/10.1038/s41598-020-73810-w


2019


2018


https://doi.org/10.1016/j.jcrysgro.2018.04.016

https://doi.org/10.1116/1.5018260

https://doi.org/10.3762/bjnano.9.99

2017
https://doi.org/10.1073/pnas.1615645114

https://doi.org/10.1063/1.4989834

https://doi.org/10.1364/OE.25.023343


2016


2015


2014


2013


Craig, A.P., Marshall, A.R.J., Tian, Z.B., Krishna, S. and Krier, A., “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl Phys Lett, 2013. https://doi.org/10.1063/1.4844615

https://doi.org/10.1016/j.infrared.2012.12.004

Agarwal, A., Srujan, M., Chakrabarti, S. and Krishna, S., “Investigation of thermal interdiffusion in InAs/In0.15Ga0.85As/GaAs quantum dot-in-a-well heterostructures,” Journal of Luminescence, 2013.
https://doi.org/10.1016/j.jlumin.2013.04.030

https://doi.org/10.1021/nl301699k

https://doi.org/10.1063/1.4772954

https://doi.org/10.1021/nl300228b

https://doi.org/10.1063/1.4764905

https://doi.org/10.1063/1.4711214


https://doi.org/10.1364/OE.20.029823

https://doi.org/10.1063/1.4733660

https://doi.org/10.1063/1.4767358

https://doi.org/10.1109/led.2012.2185477

https://doi.org/10.1117/1.OE.51.12.124001

https://doi.org/10.1063/1.4772543

https://doi.org/10.1088/0268-1242/27/10/105025

https://doi.org/10.1109/jqe.2012.2208621


2011


2010


2009


2008


https://doi.org/10.1063/1.2831666

https://doi.org/10.1116/1.2839641

https://dx.doi.org/10.1007/s11664-008-0542-0

https://doi.org/10.1063/1.3042232

https://doi.org/10.1109/Led.2008.2002946

https://doi.org/10.1049/el:20081294

https://doi.org/10.1063/1.2920764

https://doi.org/10.1063/1.2894310


2007


2006


2005


https://doi.org/10.1063/1.2032591

https://doi.org/10.1063/1.1894581

https://doi.org/10.1088/0022-3727/38/13/010

https://doi.org/10.1063/1.1924887

https://doi.org/10.1109/Jqe.2005.858791

https://doi.org/10.1109/Ted.2005.843876

https://doi.org/10.1016/j.infrared.2005.02.025

https://doi.org/10.1103/PhysRevB.72.205318

2004
https://doi.org/10.1063/1.1787618


https://doi.org/10.1063/1.1760832

https://doi.org/10.1063/1.1829383

https://doi.org/10.1116/1.1705578

2003


2002


https://doi.org/10.1116/1.1461370

2001

https://doi.org/10.1016/S0022-0248(01)00627-3

https://doi.org/10.1049/el:20010056

https://doi.org/10.1109/3.937396

https://doi.org/10.1063/1.1385584

https://doi.org/10.1109/3.958360

2000

https://doi.org/10.1049/el:20001095

https://doi.org/10.1063/1.126646

https://doi.org/10.1116/1.591413

1999

Krishna, S., Linder, K. and Bhattacharya, P., “Photoluminescence linewidth of self-organized In0.4Ga0.6As/GaAs quantum dots grown on InGaAlAs stressor dots,” J Appl Phys, 1999.
https://doi.org/10.1063/1.371421

https://doi.org/10.1063/1.371664

https://doi.org/10.1116/1.590704

https://doi.org/10.1063/1.123548